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Abstract. It is shown that a magnetic field reduces the elasticity of an interface, and consequently, 
enhances its delocalization in the RSOS Limit of the two-dimensional anMenomagnetiic king 
model with a raw of weakened bonds. As pointed out, basically the same mechanism 
is responsible for thc vanishing of the roughening temperahlre in the threedimensional 
antiferromagnetic Ising model. 

1. Introduction 

One of the very intensively studied topics in statistical mechanics is interfacial behaviour 
(for a recent review see [l]). For discrete three-dimensional models, its characteristic 
phenomenon is the so-called roughening transition [Z]. Up to now there has been only one 
exactly solvable model (BCSOS) which exhibits the roughening transition [9. Furthermore, 
the roughening transition in the ferromagnetic Ising model and the corresponding solid-on- 
solid (SOS) model are believed to be of the same nature as the BCSOS model. 

Recently we have shown that a sufficiently strong magnetic field H > Hc in the three- 
dimensional antiferromagnetic king model leads to a strong degeneracy of the ground-state 
interface [4]. For the two-dimensional model, such degenerate configurations resemble 
random walk trajectories [5] while in the three-dimensional case the ground state can be 
regarded as a high-temperature limit of the Bcsos model. This means that the degeneracy 
is so strong that the interface is already rough even at the ground state [4]. However, 
our arguments were based only on ground-state considerations whereas it would be very 
desirable to study also non-zero-temperature properties of this model in the whole range 
of a magnetic field. Of particular importance is the change of the roughening temperature 
with magnetic field. It seems, however, that for the three-dimensional antiferromagnetic 
Ising model it might be difficult to perform Monte Carlo simulations or to adopt directly 
other approaches which would be able to detect the influence of a magnetic field on the 
roughening transition, and in particular to show its vanishing in the limit H + H,. It 
should be clear that the critical field Hc, which is equal to 4J in the three-dimensional 
Ising antiferromagnet, is different from the critical field HE; = 6 J ,  at which there occurs 
the second-order phase transition to the paramagnetic phase ( J  is the nearest-neighbour 
interaction). 

On the other hand, it is well known [I] that in two-dimensional models there is a certain 
analogue of the roughening transition, namely the (so-called) delocalization transition. The 
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bound state of an interface is then achieved as a result of some amactive potential which 
can be realized. for example, as a row of weakened bonds 161. Above a certain temperature 
TO, this attractive force is not sufficient and thermal fluctuations delocalize the interface. In 
the RSOS limit (where the strength of vertical bonds goes to infinity and successive steps of 
the interface have the length of, at most, one lattice spacing), models of this phenomenon 
are much more tractable and it is believed that such a limit does not change the nature of 
the interfacial behaviour. 

In the next section we study the RSOS model which mimics the interfacial behaviour in 
the two-dimensional antiferromagnetic king model in the presence of a magnetic field and 
an amactive potential. In the last section we extend our arguments to the three-dimensional 
antiferromagnetic Ising model. 

A Lipowski and M Suzuki 

2. The model and its properties 

Consider the two-dimensional antiferromagnetic Ising model with boundary conditions 
which induce an interface. The bottom row has weakened vertical bonds and the interface 
is attracted to this row. In the SOS l i t ,  in which the strength of vertical bonds goes to 
infinity, the interface is described by the Hamiltonian 

where ni = 0,1,2, . . . and i = 1.2, ... . , N (N stands for the number of columns in our 
model and is assumed to be even). Hereafter, the horizontal nearest-neighbour interaction 
J, which can be regarded as the elasticity of the interface, is set to unity. The magnetic field 
H favours the configurations with even ni for odd i and with odd n; for even i. This can 
be changed, however, by modifying boundary conditions. Then the magnetic field would 
favour odd n; for odd i and vice versa, but of course, physical results are the same. Such 
an interface adjusted to the magnetic field goes always between (++) pairs of spins [4,5]. 
Of course, for a finite magnetic field this effect is ‘smeared‘ by thermal fluctuations. The 
pinning potential U > 0 favours the configurations with ni = 0.~ A Hamiltonian similar 
to (2.1) for U = 0 and ni = 0,&1,&2, .. . has already been studied [SI. To simplify 
calculations, we impose on the model (2.1) the following condition 

Ini - ni+ll < 1 for i = l , 2  ,..., N - 1 .  (2.2) 

To study thermodynamic properties of (2.1) we have to find the free energy F defined as 

F = - k B T h Z  Z = z e X p ( - f l E ) ,  (2.3) 
{nil 

where f l  = l/kBT, kB is the Boltzmann constant and T is the temperature. To calculate Z, 
let us define the transfer matrix T ( H )  such that 

T.,(H) = exp{-B[2ln - ml + H ( 1  - (-1)”) - U & , O ~ ]  (2.4 
where n, m = 0, 1,2. . . .. In the Hamiltonian (2.1), the contributions from the magnetic field 
have opposite signs for adjacent columns and thus in the thermodynamic limit N -+ 03, 

the free energy is determined by the largest eigenvalue AM of the product T(H)T(-H) 

-ksTN 
F = -  In AH 

2 
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This eigenvalue can be found as a solution of the following secular equation 

Am = m A ( A  + BC') + ( P ~ A C ( A  + B )  + mABC' (2.6) 

= $ooC(AB-' + 1) +(pi(AB-'C' + B-'C' + 1) + mC(1 + B-') + %B-'C2 (2.7) 

A% = h - 2  + %+dBC2 + (%-I + v ~ ~ + I ) C ( B  + 1 )  + %(2.(2BCZ + 1) (2.8) 

A%+I = (%-I + %+3)B-'C2 + (% + @n+dC(B-' + 1) + %+1(2B-'C2 + 1)  (2.9) 

(2.10) 

The remaining part of this section is devoted to studying critical properties of the model 
(2.1). 

2.1. The case H = 0 

Although the properties of our model for H = 0 are well known [I], we describe them here 
briefly. The ground state configuration of the interface is given by 

ni = O  for i = l , 2  ,..., N. (2.11) 

In the bound state T c TO, the unnormalized eigenvector (o. for n = 0.1,2,  . . ., which 
corresponds to the eigenvalue AM, has the form 

= e-@". (2.12) 

The eigenvalue AM and the parameter /.L are immediately determined from the secular 
equation (2.6)-(2.9), which, assuming (2.12), is equivalent to the following two equations 

kM = eau( l+  e-@e-'o) (2.13) 

and 

AM = 1 + 2e-'@ cosh(@). (2.14) 

For H = 0, equations (2.8) and (2.9) as well as equations (2.6) and (2.7) am equivalent. Of 
particular importance for us is the parameter I*.. which, determined from (2.13) and (2.14), 
can be written as 

(2.15) 

As follows from (2.12), the critical point, which can be regarded as a delocalization transition 
in our model, can be determined from the condition that j~ = 0, or equivalently 

,a;"(l + e--2a;) = 1 + ze-2+$ (2.16) 

where & = l/kBT:. Notice that for small U equation (2.16) leads to 

U N Tie-'@. (2.17) 
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2.2. The case H = +w 

In this case an infinitely large magnetic field suppresses unfavourable configurations at any 
temperature. The ground state thus has the tooth-like form 

A Lipowski and M Suzuki 

0 f o r i = 1 , 3 , 5  ,..., N - l  
I 1  for i  = 2,4,6,  .. ., N .  

ni = (2.18) 

Below TD, the eigenvector 9,, has again the exponentially decaying form (2.12) but now 
the only non-zero components correspond to even n 

eCpn for n = 0,2,4. . . . 
f o r n =  1,3,5, ... 9"= (2.19) 

We find from the secular equation that and A M  have to satisfy 

AM = eSue-4p(1 +e-"') (2.20) 

and 

AM = 2e-48(cosh(2p) + 1). (2.21) 

The critical temperature found from the condition p = 0 is given as 

U 
T,m = (2.22) 

Notice that for small U we have 

TF << Ti. (2.23) 

The reason for this inequality is clear. Elementary excitations for H = +w require only 
the energy U << 1 and since U is the only energy scale in this case, the proportionality 
of T' and U given in (2.22) is not surprising. On the other hand, elementary excitations 
for H = 0 require the energy of the order of unity. Competition between the entropy, the 
attractive potential U aqd the elasticity ( J  = 1) gives the relation (2.17). 

In other words, we can say that for H = +CO to excite the interface we do not need to 
increase its length, we only have to overcome the attractive potential U. 

2.3. The case 0 < H < +ca 

It is simple to show that the ground state has the structure (2.1 1) for If < Hc = 2 + U j 2  
while for larger values of H it has the tooth-like form (2.18). Of course, for H = 0 and for 
H = +m the eigenvectors (2.12) and (2.19), respectively, satisfy the equations (2.6 j(2.9). 
None of them, however, can be used as a solution of the secular equation for 0 c H < +W. 
The structure of equations (2.8X2.9) suggests that the eigenvector may be chosen in the 
form 

e-&n 

qe - "  
for n = 0,2,4, . . , 
for n = 1,3,5, .  . . 9 n  = { (2.24) 
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with some positive parameter q. Substituting (2.24) into the secular equation (2.6)-(2.9). 
we obtain the following set of four equations 

h = A(A + BC2) + qAC(A + B)e-” + ABC2e-*” 

hq = C(AB-’ + 1)e” + q(AB-‘C2 + B-’C2 + 1) + C(B-’ + l)e-* +qB-’C2e-’* 

(2.25) 

(2.26) 

A = 2BC2cosh(2p) + 2qC(B + 1) cosh(p) + 2BC2 + 1 (2.27) 

hq = 2qB-’C2cosh(2p) +2C(B-’ + l)cosb(@) +q(2B-’C2 + 1). (2.28) 

Unfortunately, having only three parameters h, p, and q. we cannot satisfy these four 
equations. However, a reasonable approximation can be obtained if we require the 
fulfillment of only three of them, namely (2.23, (2.27) and (2.28). Indeed, it is easy 
to show that such an approximation in the limiting cases H = O,+w gives the exact 
results (2.16) and (2.22). respectively. 

For arbitrary X, the critical temperature in this approximation is given as a solution of 
the following equation 

rZ(B + 1) + 2rC(B - E-’) - E-’ - 1 = 0 (2.29) 

where 

4BC2 + 1 - 2ABC2 - A’ 
C[A(A + B )  - 2(B + 1)1 ‘ 

r =  (2.30) 

The way to improve this zeroth-order approximation is straightforward. We can assume that 
the eigenvector has the form (2.24) but the coefficient % has to be determined independently, 
so as to satisfy the equations (2.7.5)-(2.28). But now the secular equation for ( ~ 2  is not 
satisfied. The exponential form of the eigenvector suggests that this inconsistency is less 
troublesome than the one for rp1 and that this approximation should be more accurate. In 
principle, it is easy to construct an nth-order approximation where the secular equation is 
inconsistent only for (D*+I. It seems that in the l i t  n + w such a series approximation 
should be convergent to the exact solution. The plot of T, as a function of H calculated 
using the zeroth-(. ,. . . .) and first-order (-) approximations for U = 0.5 and U = 0.1 
shows that even the zeroth-order approximation seems to be accurate for small values of U 
(figure 1). 

For small values of U, the critical temperature TD changes abruptly around H - H,. 
For H > Hc we basically have the situation described in section 2.2, with a tooth-like 
ground state, tensionless interface and, consequently, low critical temperature TD - U. On 
the other hand, for H -= Hc the elasticity of the interface considerably increases, which 
implies substantial raising of the critical temperature TD. The idea that a magnetic field can 
be regarded as a factor which changes the elasticity of the interface is elaborated below. 

2.4. Reduced elasticity approximation 

As is already clear, a magnetic field favours certain configurations of an interface and 
suppresses others. This suggests that a reasonable approximation for the model (2.1) can 
be obtained by getting rid of the class of the most unfavourable configurations. As a matter 
of fact, the result presented in section 2.2 can be regarded as an extreme case of such an 
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0.0 0 i 2 3 4 

H 

Figure 1. The critical temperature TD as a function of lhe magnetic field H calculated with 
the use of the zem-order (2.29) (. . . . . ,), first-order (-), and the ‘reduced elasticity’ (2.34) 
(-- --) approximations. For U = 0.1 lines (. . . . . and (-4 nearly overlap. 

approach, where the only allowed configurations have even heights at odd columns and vice 
versa In fact, if we take into account the Boltzmann factor, these odd-even configurations 
appear to be dominant for H >> Hc. However, in such a way we obtain an interface of 
a constant length and hence the results (e.g. the critical temperature) appear to be field- 
independent. 

The dominance of the odd-even configurations breaks down around H = Hc, where 
other configurations provide significant contributions as well. The extended class of low- 
energy configurations is specified below. 

Specifrcation. For H * H,, the representative configurations have even heights at odd 
columns and vice versa, with the exception that an odd height at an odd column is allowed 
provided that in nearest-neighbouring columns the height of the interface is the same. The 
analogous rule applies to even columns. 

It seems plausible that that class of configurations is representative also for H slightly 
smaller than H,. 

For the RSOS model with the allowed configurations specified above, the secular equation 
has the form 

= ‘ p o ( ~ 2  + AD*) + V ~ A D  +  AD^ (2.31) 

(2.32) 

(2.33) 

1%-I = ( ~ n - 2  + W I D  + b02n-I 

= ( ~ 2 - 2  + b02n+dD’ f (%-I + P Z ~ + I ) D  + (ozn(2D2 + 1 )  

where n = 1,2,. . . and D = exp(-p(2 - H)). 

eigenvalue has exactly the form (2.24). 
temperature can be found as a solution of the following equation 

In the bound state, the eigenvector of (2.31)-(2.33) corresponding to the largest 
After elementary calculations, the critical 

Z D ~ +  1 - A ~    AD^ 
( D 2 +  1)l” = 

D ( A  - 2) 
(2.34) 
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For U = 0.1 and 0.5, the plot of %-as a function of H is shown in figure 1. For H > 1, the 
approximation (2.34) '(- - - -) is in good agreement with the first-order approximation. The 
agreement is particularly evident for U = 0.1. In the limit H -+ CO, the formula (2.34) is 
equivalent to (2.22). Thus, figure 1 confirms that, indeed, the chosen class of configurations 
is sufficient to describe adequately the behaviour of the model (2.1) for H not much smaller 
than He (in this case for 1 < H < CO). 

Why should we struggle to conshuct an approximation which is valid only in a certain 
range of a magnetic field while the approximations presented in section 2.3 are accurate 
in the whole range? The main reason stems from the fact that the approximation (2.34) 
has a certain physical interpretation which can be extended to higher-dimensional models 
as well, while it is almost impossible to apply the previous approximations to such models. 
The above mentioned interpretation is easy to grasp if we notice that the whole effect of a 
magnetic field is now incorporated in the factor D which can be seen as the exponent of 
the reduced elasticity 

J ' =  ( I  - H/2)  (2.35) 

in the RSOS model defined in the specification. This can also be understood using a 
simple argument, which in the next section will be generalized to the three-dimensional 
antiferromagnetic Ising model. Neglecting the attractive potential U, which can be included 
separately, let us calculate the energy of a con6guration of the interface which satisfies the 
conditions imposed in the specification. The energy E is measured with respect to the flat 
configuration (2.11). First let us consider a single excitation of the height of unity and of 
an arbitrary horizontal length. According to the specification, the length must be an odd 
number and consequently the energy E is always equal to 4 - 2H. Excitations of larger 
heights can be built layer by layer, which always increases the energy by the same amount 
4 - 2H. 

Thus, the resulting model is equivalent to the RSOS model with the Hamiltonian 

(2.36) 

where the elasticity constant j is given by (2.35) and allowed configurations are described 
in the specification. 

According to (2.35). we have j < 0 for H > 2. This means that in the model (2.36) 
the favourable configurations are the 'wrinkled' ones, i.e. those of large length. Due to 
the attractive potential, the change of the ground state is shifted by U j 2  and appears at 
Hc = 2 i- Uf2. 

3. Discussion 

In the previous section we have studied the RSOS model which mimics the behaviour of 
an interface in the two-dimensional antiferromagnetic Ising model in the presence of a 
magnetic field H and with an attractive potential U at the bottom row. The striking effect 
is the abrupt change of the critical temperature TD for a small value of U around H = 2. 
According to the main result of section 2.4, we can regard this effect as caused by vanishing 
of the elasticity constant in a modified RSOS model (2.36). An accompanying effect is the 
change in the ground state which for H > HE = 2 + U / 2  has a tooth-like structure. 
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It seems that the influeme of the magnetic field on the interfacial behaviour in 
the presented RSQS model (2.1) is basically similar to that in the three-dimensional 
antiferromagnetic Ising model. In the same way as described in section 2.4, we can argue 
that as H approaches H, = 4 from below, the dominant excitations satisfy certain parity 
conditions with respect to the sum of the two coordinates S: even height for odd S and vice 
versa. And also as in section 2.4, the violation of these conditions is allowed provided that 
the nearest-neighbouring columns (now four of them) have the same height. Considering 
the energy E of the excitations of unity-height, one finds easily that E = p ( 2  - H/2), where 
p is the perimeter of the excitation (to find p .  one counts only vertical parts of the interface; 
for configurations with one unity-height excitation in the two-dimensional model considered 
in the previous section, p = 2). Again, as excitations of arbitraq heights can be built layer 
by layer, their energies are proportional to their total perimeter and to the elasticity 

(3.1) 

Thus, at least for H close to Hc, the interface is described by the RSOS model in which the 
effect of a magnetic field is incorporated only in the elasticity constant (3.1). 

As there is no attractive potential in this model, this constant gives the only energy 
scale. Therefore, the roughening temperature should be proportional to 7 and hence it 
should vanish at Hc. The above analysis applies to the three-dimensional antiferromagnetic 
Ising model only in the close vicinity of the critical field H, = 4, where the roughening 
temperature is sufficiently small to validate the RSOS approximation. 

The final remark concerns the universality of the roughening transition. It is not difficult 
to show that fo; the two-dimensional RSOS model studied in the previous section the critical 
exponents of the delocalization transition are the same for H = 0 and H = CO, and also 
for intermediate values of the magnetic field within the introduced approximations. This 
suggests that the magnetic field does not change the universality class of the roughening 
transition in the three-dimensional antiferromagnetic king model either. However, for a 
definite answer h e r  arguments are needed. 
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